

AUTHOR & PERFROMANCE

K.R. van der Sluis en M.J. van der Sluis **PlasmaMade B.V.** Netherlands

SUMMARY:

In this document we want to show what the pressure drop is for different channels and recirculation solutions. We also want to demonstrate the consequences for the extraction capacity and the motor / fan choice.

INDEX:

- 0: front and summary
- 1: Introduction
- 2: Measurement results
- 3: Conclusion
- 4: References

Introduction.

In this document we would like to explain and show what the pressure drop is for different solutions of exhaust or filtering the air. This is often achieved by means of an extractor hood or extraction system. The main options are a channel to the outside or recirculation in the room. Various solutions are possible under recirculation, such as, for example, carbon modules or plasma filters.

In this document we deal with the channels that are commercially available as standard, which you will also find later in this document in, among other things, the pressure drop diagram. We had the support of EBM Papst in making this document. EBM Papst is a leading fan / motor supplier which is used by the vast majority of extractor manufacturers as a supplier for their motors.

One of the main research questions is: could a motor break down due to pressure drop in the ductwork, or due to pressure drop with the use of recirculation filters?

In this document we have not included the pressure drop of the different grease pre-filters, because it differs per extractor. A grease pre-filter will always contribute to a higher back pressure, because the closer the filter the higher the back pressure, it is expressed in PA (Pascal). The higher the pressure in the system, the less m3 / h the fan / motor produces (due to pressure loss).

In ductwork we talk about "the resistance" and / or "the back pressure", this means the pressing force on the surface. When the air flows through the ducts / pipes / channels, it experiences friction against the walls, it encounters obstacles, must change direction due to branches, widenings, constrictions, etc. With a fan, the pressure is displayed in Pascal (Pa). The higher the pressure in a system, the less capacity in m3 / h the fan produces (pressure loss).

Then we have the static pressure (PE), which is the force that the air exerts in all directions and on the entire surface of the walls. And then there is also the dynamic pressure (PD), which is the force that causes the air to accelerate from 0 meters per second to the actual speed (m / s) in the channels of the complete system.

In the end we talk about total pressure (PT), which is the sum of the static pressure and the dynamic pressure (PT = PE + PD).

We can also link the volume to this. Sound is a mechanical vibration / vibration that produces an audible sensation and propagates through waves. Fans obviously make noise, which has to do with the running of the motor and the noise of the displaced air volume. In any case, avoid resonance (vibrations from the fan passing through the system), often caused by imbalance. Resonance greatly amplifies the fan noise. We can say that: the higher the pressure in Pascal (Pa), the higher the sound of the fan (the pressure compensation of motors will automatically increase the speed).

2. Measurement results.

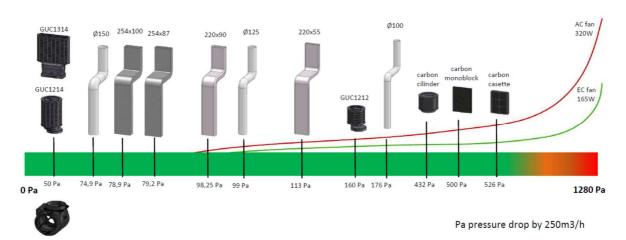
The diagrams below show the various options available for connecting an extractor hood and / or an extractor system. First of all, we are talking about processing the cooking air (air to be extracted) outwards by means of an extractor hood and / or extraction system. We made the calculations with 3 meters of ductwork (see different diameters). Starting with a 50 cm flexible hose which is connected to the exhaust nozzle of the engine, then three times one meter straight duct with two bends of 90 degrees, a non-return valve (butterfly valve with springs) and an outside wall grille. We have assumed a fairly ideal situation in these diagrams, we know that in reality it is often different. In practice, the number of meters of channels and the number of bends used are often a multiple of the situations depicted here. The longer the ductwork, the use of extra bends and the making of bends with a flexible hose, the back pressure / resistance in Pa (pascal) will increase proportionally, as will the energy consumption of the extractor hood.

The diameters and dimensions of the channels are shown visually in diagrams of figure [1] [2] [3].

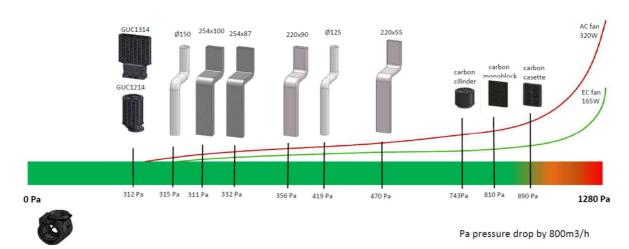
The first recirculation option included the 3 different PlasmaMade models, the GUC1214, GUC1314 and the GUC1212.

the two models, GUC1214 and GUC1314, are both suitable for extractor hoods with a maximum extraction capacity of 1000m3 / h. The smaller GUC1212 is suitable for extractor hoods with a maximum extraction capacity of 600m3 / h. In the attached diagrams you can see the different pressure drops measured by EBM Papst in Germany, among others.

As a second recirculation option, three standard carbon filters have been included, which may include the square / rectangular cassettes. These cassettes are often placed in front of the engine (pull system). As a second carbon option, we consider the long life carbon blocks. These long life carbon blocks are mounted in the shaft after the engine (push system). As a third and last option we treat the carbon cartridges / cylinders which are mounted directly on the exhaust nozzle of the engine (push system). We have not been able to obtain and / or find the pressure drop in Pa from all manufacturers in this document. We would get hundreds of different types, but the outcome will not differ much. We also did not include the pollution by means of grease, dirt and moisture. It is clear that the pressure (and sound) due to pollution will increase enormously as the filter ages. We will not consider the operating time of a carbon filter here.



Examples of two carbon cassettes and a carbon block


Figures [1] [2] [3], shown below, show a color bar from green to red. In the red part, the pressure drop is so great that the extractor hood no longer extracts and the motor runs in its own air (no more suction and no more blowing). Research, at EBM Papst, among others, shows that this **has no destructive consequences** for the fan / motor.

Figuur 1 Pressure drop by 250m3/h

Figuur 2 Pressure drop by 500m3/h

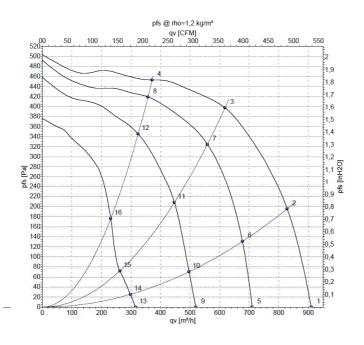
Figuur 3 Pressure drop by 800m3/h

3. Conclusion.

This investigation has shown that with various solutions for connecting a hood and / or extraction system, the motor power and the type of motor installed therein are important for the operation of the relevant hood and / or extraction system. Ultimately, it is important that the air is guided as aerodynamically as possible through the channel or recirculation filter, this has the positive purpose that you can move more air with less resistance and which ultimately also has a positive effect on the sound. It is also important that the right conditions are taken into account, so when extracting the air outside, the power in cubic meters per hour (m3 / h) is very important so that you only get **one chance** to discharge the air. Always make sure here that the air that goes out must also be brought back in. If there is no "clean air supply", you will get an underpressure, and the extractor hood will no longer have air to suck, causing the operation to stop. It works differently with recirculation. When recirculating, it is important to use the extractor hood or extractor at the lowest or second position. The capacity of the extractor hood can and may be less, up to 600m3 for example. These lower values are possible because the ideal situation with recirculation is around 200 to 300 m3 / h (lowest and second position). Today's so-called recirculation hoods / systems usually already meet these new standards.

The main question in this study is: is an extractor hood or exhaust system motor defective due to too high a back pressure (Pa)? This question has also been returned to EBM Papst, among others. The answer is a definite NO, because these engines are usually built to compensate for pressure (Pa) up to 1350-1500 PA (engines in extraction systems). The diagram above also shows that none of the commonly used solutions do not reach these high back pressures (Pa). Even if the static and dynamic air are included in the calculations. What happens if the engine is nevertheless loaded with back pressures that are higher than the engine can handle? The answer is actually very simple and obvious. The answer can also be read in the diagrams of both engines separately (see curves of EBM Papst appendices). The engine then runs in "its own air" (no suction and no blowing) and will no longer extract, an engine cannot and will not break. As already indicated in the diagram of the different channels, the motor / fan cannot break if a smaller diameter is connected. Only the back pressure in Pa increases, so this has nothing to do with the fact that an engine can break, if that were the case, any extractor hood with a carbon filter would fail in the foreseeable future as the back pressure / resistance that a carbon cassette supplies are on the high side. In addition, each motor is protected by EBM Papst with a thermal protection, if it gets too hot, the motor will first switch off and switch on again after it has cooled down. EBM Papst indicates that due to back pressure, the thermal protection never gets so hot that it must intervene. Thermal protections, however, often operate in the event of fire and / or excessive temperatures from the extractor hood and / or environment.

The development of motors / fans also takes into account the application of the motor concerned, the same applies to the manufacturers of ducts and recirculation solutions. We always strive for the lowest possible resistance (good aerodynamics) to save energy and reduce noise. This is also the reason that more and more EC controlled motors are used. EC motors use less energy and produce less noise, so we are able to build recirculation filters that in the new energy-poor appliances only need to have 300 m3 / h extraction capacity. Due to the low m3 / h in combination with a lower air speed, the resistance is lowered and this again benefits the energy consumption and the sound intensity.


4. References.

D2E146-HT59-02

AC centrifugal fan

forward-curved, dual-intake with housing (flange)

Curves: Air performance 50 Hz

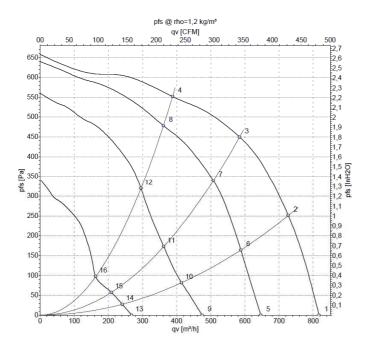
Measurement: LU-156752-1 Measurement: LU-156754-1 Measurement: LU-156757-1 Measurement: LU-156762-1

Air performance measured according to ISO 5801 installation category A. For detailed information on the measurement setup, control etheropesh infalse sound seven control etheropesh infalse sound seven control etheropesh infalse sound seven seven

Measured values

	U	f	n	Pe	I	LpAin	LwAin	q _V	p _{fs}	q _V	Pfs
	٧	Hz	min-1	W	А	dB(A)	dB(A)	m ³ /h	Pa	cfm	inH2O
1	230	50	1600	290	1.28	62	73	910	0	535	0.00
2	230	50	2020	256	1.12	61	73	830	200	490	0.80
3	230	50	2420	203	0.89	60	72	620	400	365	1.61
4	230	50	2645	161	0.70	63	74	370	450	220	1.81
5	230	50	1280	247	1 08	56	67	710	0	420	0.00
6	230	50	1665	226	0.99	56	68	675	133	400	0.53
7	230	50	2210	183	0.83	59	70	560	325	330	1.30
8	230	50	2550	140	0.66	63	74	360	421	210	1.69
9	230	50	960	203	0.89	48	59	520	0	305	0.00
10	230	50	1235	196	0.87	49	60	495	70	295	0.28
11	230	50	1805	174	0.78	53	65	445	214	265	0.86
12	230	50	2330	133	0.63	60	71	325	345	190	1.39
13	230	50	595	163	0.72	36	47	315	0	185	0.00
14	230	50	765	160	0.71	36	47	300	26	175	0.10
15	230	50	1065	154	0.68	40	52	265	72	155	0.29
16	230	50	1675	138	0.63	51	62	230	181	135	0.73

 $U = Power supply - 1 = Frequency \cdot n = Speed (rpm) \cdot P_e = Power consumption \cdot 1 = Current draw \cdot LpA_m = Sound pressure level intake side \cdot LwA_m = Sound power level intake side q_v = Air flow \cdot p_n = Pressure increase$



D2E146-HT59-02

AC centrifugal fan

forward-curved, dual-intake with housing (flange)

Curves: Air performance 60 Hz

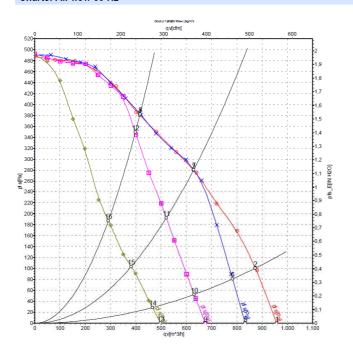
Measurement: LU-156771-1 Measurement: LU-156772-1 Measurement: LU-156773-1 Measurement: LU-156774-1

Air performance measured according to ISO 5801 installation category A. For detailed information on the measurement setup, contact dempeages Indake sound several seve

Measured values

	U	f	n	Pe	1	LpAin	LwAin	q _V	p _{fs}	q _V	p _{fs}
	V	Hz	min-1	W	А	dB(A)	dB(A)	m ³ /h	Pa	cfm	inH2O
1	230	60	1500	320	1.40	60	71	815	0	480	0.00
2	230	60	2085	296	1.28	60	71	725	250	430	1.00
3	230	60	2570	267	1.17	62	73	585	450	345	1.81
4	230	60	2930	236	1.06	65	77	390	550	230	2.21
5	230	60	1170	254	1.11	54	65	645	0	380	0.00
6	230	60	1685	244	1.08	54	66	590	164	345	0.66
7	230	60	2260	221	1.01	59	70	505	339	300	1.36
8	230	60	2720	188	0.92	64	75	360	477	210	1.91
9	230	60	875	204	0.92	46	57	475	0	280	0.00
10	230	60	1225	197	0.89	46	56	415	81	245	0.33
11	230	60	1640	192	0.88	51	62	360	173	215	0.69
12	230	60	2255	169	0.82	59	70	295	320	175	1.28
13	230	60	515	157	0.72	29	40	270	0	160	0.00
14	230	60	730	153	0.70	30	41	240	28	140	0.11
15	230	60	955	151	0.69	36	47	210	57	120	0.23
16	230	60	1245	147	0.68	42	53	165	93	95	0.37

 $U = Power supply - f = Frequency \cdot n = Speed (rpm) \cdot P_e = Power consumption \cdot I = Current draw \cdot LpA_m = Sound pressure level intake side \cdot LwA_m = Sound power level intake side q_v = Air flow \cdot p_m = Pressure increase$



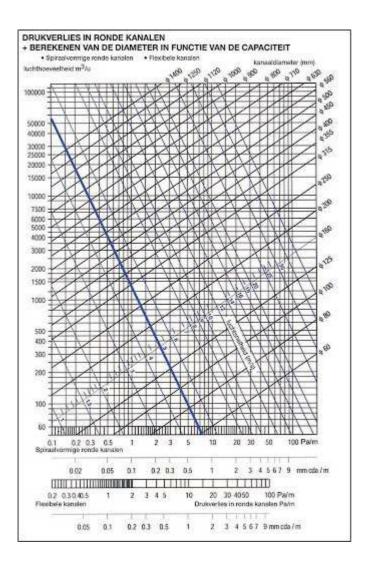
D3G146-HQ01-01

EC centrifugal fan

forward curved, dual inlet with housing (large flange)

Charts: Air flow 50 Hz

Measurement: LU-13208 Measurement: LU-13208 Measurement: LU-13208


Air performance measured as per ISO 5801 Installation category A. For detailed information on the measuring setup, please contact ethin pages. Suction side noise levels: LwA measured as per ISO 13447 I. p.A measured with 1 m distance to fan axis. The values given are valid under the measuring conditions mentioned above and may vary according to the actual installation situation. With any deviation from the standard set-up, the specific values have to be checked and reviewed with the unit installation.

Measured values

	U	f	n	Ped	1	qv	p _{fs}
	V	Hz	min-1	W	А	m ³ /h	Pa
1	230	50	1610	165	1.30	955	0
2	230	50	1830	165	1.30	875	100
3	230	50	2165	134	1.06	630	280
4	230	50	2445	110	0.89	415	380
5	230	50	1390	100	0.80	835	0
6	230	50	1640	113	0.91	785	81
7	230	50	2175	136	1.07	630	281
8	230	50	2450	110	0.90	415	383
9	230	50	1130	50	0.43	675	0
10	230	50	1325	59	0.49	630	52
11	230	50	1810	73	0.61	520	192
12	230	50	2345	94	0.76	400	350
13	230	50	865	22	0.21	500	0
14	230	50	1000	25	0.23	465	28
15	230	50	1360	32	0.28	380	103
16	230	50	1740	40	0.35	290	187

